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The low-speed combustion of initially unmixed gaseous reactants under an 
irreversible two-step chain reaction is examined. Both equilibrium burning, in 
which two spatially separated flames of zero thickness arise, and near-equilibrium 
burning, in which two spatially separated flames of small but finite thickness 
arise, are studied by limit-process expansion techniques. Two time-dependent 
flows are examined: the first is (one-dimensional) transient mixing flow; and 
the second is (two-dimensional) transient counterflow. The latter flow, in which 
there is an impressed finite strain parallel to the flame, such that the flame itself 
is longitudinally stretched, is discussed as elucidating the characteristics of 
combustion in non-equilibrium turbulent shear flow. 

1. Introduction 
Equilibrium irreversible burning of initially unmixed gaseous reactants under 

a direct one-step mechanism leads to a flame (mathematically) of zero thickness, 
situated where the reactants meet in stoichiometric proportions (Burke & 
Schurnann 1938). There is no interpenetration of reactants, with the flame acting 
as a sink for reactants and a source for products. Diffusion dominates convection 
as the mode of mass and heat transport in the immediate vicinity of the flame, 
whence the name diffusion flame (Williams 1965). Slight departures from 
equilibrium and/or irreversibility result in a thin flame of non-zero thickness. 
Limit-process expansion techniques (for a Lewis number of unity) have been 
employed, both formally and informally, to perturb about the singular flame- 
sheet limit (Friedlander & Keller 1963; Li5an 1963; Pearson 1963; Fendell 1965, 
1967). 

Direct one-step chemical kinetics is a frequently useful phenomenological 
model. However, there are many chemical processes in which no one step is 
rate controlling, and the multi-step nature of the chemical mechanism must be 
explicitly examined. The special properties of the multi-step kinetics of hydrogen- 
oxygen combustion without premixing have been studied under the singular near- 
equilibrium and near-irreversible conditions, but one combustion zone has always 
sufficed, even when many simultaneous reactions were included (Clarke 1968, 
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1969; Clarke & Moss 1969). Other authors have considered different chemical 
mechanisms, and have suggested that spatially separated flame surfaces may 
be employed to  model the combustion. For example, two flame surfaces have 
been used to describe a reversible one-step reaction in chemical equilibrium for 
a boundary-layer flow (Cohen, Bromberg & Lipkis 1958); however, two spatially 
separated flames can never be generated by a one-step reaction, and the model 
proposed is not a rational limit of the properly formulated boundary-value 
problem. Also, two separated thin flames have been used to describe the burning 
of a planar jet, consisting, in part, of a mixture of two chemically distinct fuels 
flowing into an oxygen-containing ambient atmosphere (Schetz 1970) ; however, 
oxygen does not penetrate the first thin flame under the Burke-Schumann 
model, and, in fact, the two thin flames have to becoincident, so that, effectively, 
a single fuel is being burned. 

Nevertheless, there are chain-type chemical mechanisms for which, under 
equilibrium irreversible burning, spatially distinct diffusion flames do describe 
the combustion of initiaZZy unmixed reactants. (The so-called cool-flame phen- 
omenon, in which spatially separated flames occur in premixed reactants, not 
necessarily owing to chain-type mechanisms, is well known (Korman 1970).) 
The mechanism to be examined here is the irreversible two-step chain reaction 

A+B,+B+C, (l.la) 

B+A, + A +C, ( l .1b)  

in which the atoms A and B serve as chain carriers. Clearly, the two-step 
mechanism pertains when either of the two diatomic species A ,  and B, has 
not been entirely dissociated; if species A,  (or B,) has been entirely pre- 
dissociated, then ( 1 . 1 ~ )  (or (1.1 b ) )  alone describes the relevant one-step 
mechanism. Of course, some dissociation of A, and/or B, is a prerequisite to 
starting the chain. 

Several examples of the chain reaction (1.1) are now considered. A particularly 
interesting example is the burning of hydrogen and a halogen (such as fluorine), 
so that C denotes the product hydrogen halide. [Relative to many other reactions, 
the frequency factors are large and the activation temperatures are small in 
the specific rate constants for hydrogen-halogen reactions; the reaction rates 
are large and comparable, so near-equilibrium treatment of both ( 1 . 1 ~ )  and 
(I. I b)  is of prime interest.] This case is relevant to many continuous diffusion-type 
chemical lasers currently under development (Kerber, Emanuel & Whittier 
1972). Incidentally, in practice, the direct reaction of the atomic species A and 
B is three-body and, therefore, a t  ordinary pressures, so very much slower than 
either ( 1 . 1 ~ )  or ( 1 . l b )  that it  may be entirely omitted. Another example of 
a mechanism closely related to  (1.1) is the burning of a general hydrocarbon 
gas C,H, (at temperatures below those at which oxides of nitrogen occur in 
significant amounts). According to  theory (Edelman, Fortune & Weilerstein 
1972), and possibly also experiment (Tsuji & Yamaoka 1971), the unpremixed 
burning of the hydrocarbon and oxygen involves a two-step mechanism in which 
the hydrocarbon reduces oxygen from carbon dioxide to form carbon monoxide 
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FIGURE 1. A schematic diagram of the structure of the two diffusion flames for equilibrium 
irreversible burning of initially unmixed species A and A,  and B and B,, under chemical 
reactions (1.1). Species A and A,  lie to one side of the two flames; species B and B,, 
to the other side. Between the two flames, only the monatomic chain carriers A and B 
can be found. Product species C(l), formed at the B,+A flame, and C(,,, formed a t  the 
A ,  + B flame, diffuse away. 

and water vapour; the monoxide burns with the oxygen to form the dioxide.? 
The authors report this work for completeness, without comment on its validity. 
A third example of a mechanism related to (1 .1)  is the (widely studied) two-step 
chain reaction for the formation of nitrogen oxide (Zeldovich 1946). In  this 
mechanism, monatomic nitrogen (oxygen) reacts with diatomic oxygen (nitro- 
gen) to form nitrogen oxide and monatomic oxygen (nitrogen). The analogy with 
(1. I)  is only partial, because the reactants are premixed in many cases of interest, 
the reverse reactions are not negligible and the two forward rates are not 
comparable. 

No theory describing the finite structure of multiple diffusion flames as the 
reaction rates are relaxed from indefinitely large values, relative to the flow 
rates, has been presented. Only by pursuing such corrections can the adequacy 
of the thin-flame limit in describing actual situations be estimated. 

In  this paper, two time-dependent low-speed parabolic boundary-value 
problems are treated (for Lewis and Prandtl numbers of unity), to elucidate 
the properties and structure of the two diffusion flames generated by the two- 
step chain (1.la) and (1 .1  b )  (see figure 1). The first problem is the (fundamental) 
transient one-dimensional mixing flow in which the convection is induced by 
thermal inhomogeneity. For this problem, the relative locations of the two flames 
in time for infinite-rate chemical kinetics are examined. The second is the 

t The explicit chemical mechanisms proposed by Edelman et al. for unpremixed burning 
of the hydrocarbon gas C,H, in oxygen are 

2C,Hm+(212+m) GO, + (4n+m) CO+mH,O, 

Gurevich & Stepanov (1973) also propose a two-step mechanism for unpremixed burning 
of a hydrocarbon gas in oxygen, but suggest that water vapour, rather than carbon 
dioxide, serves as a chain carrier. From their diagrams, the mechanisms are 

2CnH, + 212H,O -+ (212 + m) H, + 2nC0, 

2H, + 0, -+ 2H,O. 
The step listed first in each of these models for hydrocarbon burning is endothermic, while 
the step listed second is exothermic. 

2co + 0, --f 2c0,. 
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transient counterflow problem (cf., for example, Fendell 1967), in which forced 
convection, in the form of an impressed constant rate of strain along the flame, 
is introduced. For this problem, the location and the structure of the two flames 
for (large but) finite-rate chemical kinetics are studied by limit-process expansion 
techniques. 

The solutions to both of these problems are developed from treatments of the 
complete time-dependent conservation laws for mass, momentum and energy 
in multi-component flows. Thus, solutions to these problems are relevant for 
laminar flows. However, recent experimental investigations (Gibson & Libby 
1973; Otsuka & Niioka 1972, 1973) have argued that the second problem also 
furnishes insight into turbulent reacting flows of initially unmixed reactants. 
In  fact, Klimov (1967) suggests that the second problem furnishes insight into 
turbulent burning of premixed reactants when reaction times are short relative 
to flow times. For the case of chemical kinetics involving large but finite rates, 
these papers suggest that turbulent reaotion zones consist of thin flames stretched 
owing to finite tangential rates of strain. The relevance of the transient counter- 
flow problem to turbulent reacting flow is discussed again when the solution 
is developed. 

2. Formulation 
The equations (and boundary conditions) for the two cited cases of time- 

dependent, two-dimensional, chemically reacting flows are formulated in this 
section. In  this formulation, attention is focused on the following two-step 
irreversible chain reaction: 

d + B, 2 B + C(l), (2. la) 

B + A , 5 A + C@,. ( 2 . 1 b )  

It is noted that Ccl) and Ccz, represent the chemical species A B  produced by 
reaction 1, equation (2.1a), and reaction 2,  equation (2.1 b ) ,  respectively. The 
distinction is made here since the internal (vibrational and rotational) states of 
the products Ccl) and Cc2) may differ. 

In  conventional notation, for low-speed flow with Lewis and Prandtl numbers 
of unity and with the dynamic viscosity linearly proportional to the temperature, 
the non-dimensional conservation equationst are (Williams 1965; Bush & 
Fendell 1973 a) 

pT = I, (2.2) 

In the non-dimensionalization, a typical length is taken to be (p+k:/pr)a, and a typical 
time as kr, where kf is a typical strain rate. The quantity Yi is the stoichiometrically 
adjusted mass fraction of species i, i.e., the mole fraction of species i under the approxima- 
tion that the molecular weighte of all species are nearly equal. Discretion is necessary when 
the results are appIied to gaseous mixtures containing hydrogen. Each dependent variable 
is to be interpreted as the lowest-order term of a regular perturbation, series in integral 
powers of the Mach-number-like parameter TI’, where II’ prk:/pL = p+kT/pfR+T: + 0. 
For example, T’(xi, t ’ )  = T ( q ,  t )  + II’T(l)(q, t )  + . , ., where = q and t‘ = t .  
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( 2 . 4 a )  

I n  ( 2 4 ,  the linear combinations, the (so-called) Shvab-Zeldovich functions Og, 
are defined by 

@B = Y, + YB, - YA,, ( 2 . 6 a )  

@co, = yc,,, +YB,> @c,,, = yc,z, +Y& ( 2 . 6 b )  

@T = T+Q;YIj2+Q;iYA2. ( 2 . 6 ~ )  

@, = Y, + Ya, - YB,, 

With the introduction of the differential operator L, defined by 

a a  
f,(~,~,t), ( 2 . 7 )  

the equations ( 2 . 5 )  for the Shvab-Zeldovich functions may be re-expressed as 

L{Oq} = 0 .  ( 2 . 8 )  

I n  general, species continuity and/or energy equations must complement (2.2)- 
( 2 . 5 )  so that each chemical reaction rate appears explicitly. I n  the notation of 
( 2 . 7 ) ,  the species continuity and energy equations are given by [Q; and R; are 
the (so-called) first Damkohler numbers] 

( 2 . 9 a )  

( 2 . 9 b )  

( 2 . 1 0 a )  Tl = T-lexp{ -O;(Ti* -T)/T}Y,Y,,, 
Y2 = T-lexp{-Bi(Ti* -T)/T}YBYAz. ( 2 . 1 0 b )  

The quantities QL are non-dimensionalized heats of reaction. The quantities TL* 
arise because factors characterizing the Arrhenius exponential function have 
been incorporated in the first Damkohler numbers QL. I n  succeeding sections, 
attention is directed to  the case of rapid-rate (near-equilibrium) chemical 
kinetics, for which Q& + 00, while 0; --f O( 1) .  For now, it is emphasized that, for 
cases of interest, the ratios 19;/0; and n;/Q; are O( 1) .  

The above equations are supplemented by boundary and initial conditions 
(to be specified) that are compatible with the given flow situations. Here, it is 
noted that, for the two flows considered, the flow fields are spatially unbounded 
with initially unmixed reactants such that, as y +- 00, there is a reservoir of 
species B and/or B, (say), with neither A nor A ,  present, and, as y 3 -m, there 
is a reservoir of species A and/or A,, with neither B nor B, present. 

i L{Y,} = - n;rl+ np,, L{Y,J = - qr2, 
L{Y,) = n; rl - n; r,, L(Y,~J = - Q; rl, 

L{yc(ll~ = n; Tl, ~ & , , , )  = Q;, r2, 

L{T} = n; Q; rl + a; Q; r,, 
with 

45 F L M  64 
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3. The one-dimensional transient mixing flow case 
The first flow geometry considered is the (fundamental) one-dimensional 

transient mixing flow (with no impressed rate of strain). An analysis of this flow 
is presented for the equilibrium reaction case, with f2k-l = 0. This analysis 
developsresults concerning the behaviour of the flow exterior to the (two spatially 
separated) flame fronts, which are applied (in 5 4 )  to the second flow geometry 
for the near-equilibrium reaction case, with f2;-l+ 0. 

For the mixing flow case, the flow quantities are taken to be 

U ( X , Y , t )  = 0, V(Z, y, t )  = V(y, t ) ,  24x9 Y ,  t )  = P(y,  t ) ,  

q x ,  y, t )  = H ( y ,  t ) ,  yl,(x, Y, t )  = JAY, t ) ,  @&,Y, t )  = Fq(Y, t ) .  

The resulting reduced equations for this flow are 

( 3 . 2 a )  

( 3 . 2 b )  

( 3 . 2 ~ )  

Application of a modified Howarth-Dorodnitsyn transformation (cf., for ex- 
ample, Stewartson 1964, chap. 6 )  (y, t )  + (<, r ) ,  with 

dz 
r = f ,  <=[ - 

. n H ’  
to ( 3 . 2 a )  yields 

( 3 . 3 a )  

for V’ + 0 as <+ 0, ( 3 . 3 b )  

with Y‘(<,7) = Y ( y ,  t ) ,  B’(<,r) = H(y , t )  and Y;)(7) = 0. Under this transforma- 
tion, then, it is seen from ( 3 . 3 ~ )  that the functions Fi(<,r) = F,(y,t) satisfy, in 
the domain r > 0, -00 < < < 00, 

a F ; p  - a2Fyag2 = 0, ( 3 . 4 )  

the (so-called) diffusion equation. 
Associated with equations ( 3 . 4 )  are the following initial conditions: 

Fh(<, 0) = EiO(<), a specified function; ( 3 . 5 a )  

FLO( +00)  = Pq, a constant; F;O(-OO) = 4, a constant. ( 3 . 5 b )  

It is noted that, since the flow field is spatially unbounded with initially unmixed 
reactants, as < 4 + 00, there is a reservoir of species B and/or B, (say), but none 
of species A or A,  or (for the case of interest here) C is present; while, as < -+ - CO, 

there is a reservoir of species A and/or A,, but none of species B or B, or (for the 
case of interest here) C is present. Thus, 

P A  = - i B 2 ,  P B  = I B + I B z ,  Pc(l, iB2, P p ( 2 )  = 0, #T = B + Q;jB2; ( 3 . 6 a )  

PA = JA + JA2, P B  = -JA2, = 0, = JAz, J$ = H + Q L  JA,. ( 3 . 6 b )  
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For the case of chemical equilibrium, i.e. Cl;-l= 0, (3.4) and (3.5) must be sup- 
plemented by additional information concerning the behaviour of the components 
of the functions Fk at  the reaction fronts t ; lc (~) .  Here, C1(7) and &(T) denote the 
(to be determined) locations a t  time 7 of the (so-called) thin flames for reactions 
1 and 2, respectively. With 0L-l = 0, for preservation of finite transport of heat 
and mass, it is necessary that, for all 6, 

so that JLJ;, = 0;  (3.7a) 

SO that J;S Jh ,  = 0. (3.7 b)  

On the physical grounds that the minimum discontinuity is preferred (i.e. the 
components of the functions should be continuous at  the reaction fronts, but 
not necessarily the gradients of the components), Burke & Schumann (1928) 
suggested that, for !&-l = 0,  reactions 1 and 2, respectively, are confined to 
the interface 11(7) and lz(7),  (mathematically) of zero thickness, where the 
reactants meet in stoichiometric proportions. Then, 

JL,J;3,-+0 as C-+Cl;  J ; , J L 2 + 0  as 5+C2. (3 .8a)b)  

Equations (2.1) and (3.8) are compatible if and only  if&(^) 2 c2(7). Equation (3.4)) 
written for each of the five functions F;, subject to the requirements of (3.7)) 
yields seven equations for the seven variables H' and J;. 

The solutions of (3.4) and (3.5) (cf., for example, Carslaw & Jaeger 1959, p. 53) 

Yl = H'-lexp(-B;(T;*-H')/H')JI4J&, = 0, 
Tz = H'-l exp { - @;(Ti* - H ) / H ' )  J& J;, = 0, 

Further details and numerical results for the solutions for specific (including 
non-self-similar) examples are presented in appendix A. 

The solution of these problems indicates that the two-step symmetrical chain 
reaction posed by (2. I )  does, under equilibrium irreversible conditions in which 
fuel and oxidant species are initially unmixed, lead t o  two spatially separated 
thin flames with only the monatomic chain-carrying species present between the 
flames (see figure 1). Furthermore, with the depletion of either of the diatomic 
species, the chemical reaction involving that diatomic species goes to extinction 
(so that the more commonly treated case of a single diffusion flame evolves). 
Extinction may be suggested within the context of the thin-flame solution by 
rapid translation of the flame to the flow boundaries, or movement off to infinity 
in an unbounded geometry. 

Departure from equilibrium irreversible conditions in diffusion-flame burning 
may arise, of course, because of physical phenomena other than depletion of 
a reactant. For example, the first Damkohler number may tend to order unity 
as the characteristic flow time becomes comparable with the characteristic 
reaction time. A transient counterflow, in which the inverse of the local strain 
rate furnishes the characteristic flow time, is considered in the next section. If 
the chemical kinetics are such that the rates of reaction for (2.1 a )  and (2.1 b)  are 
comparable, and if the strain rate does not have very large spatial gradients, 
then a large strain rate would imply that both reactions simultaneously pass 
from thin-flame conditions; this contrasts with reactant-depletion considerations 
in which, as noted, only one reaction might pass from thin-flame conditions. 

45-2 
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4. The transient counterflow case 
The steady counterflow geometry, in which two directly opposed continuous 

streams meet, mix and flow laterally away, has become, both theoretically and 
experimentally, a frequently adopted geometry for studying properties of laminar 
diffusion flames (Fendell 1965, 1967; Tsuji & Yamaoka 1971; Otsuka & Niioka 
1972, 1973). Here, the time-dependent counterflow is examined for the initially 
unmixed burning of fuel and oxidant for the two-step chain reaction of (2.1). 
Brief allusion has been made in 9 1 to the fact that the motivation for considering 
such a flow stems from recently observed properties of transitional and non- 
equilibrium free turbulent flows. It is pertinent to consider this motivation in 
further detail a t  this point.? 

4.1. 11.1 otivation relative to turbulent reacting$ow 

Progress in turbulent reacting flows has lagged behind that in laminar reacting 
flows. The traditional approach to the study of turbulent reacting flows has been 
to apply (Reynolds) time averaging to the conservation laws, the closure of the 
resulting set of equations requiring the identification of the time averages of 
fluctuating quantities (introduced by the nonlinear inertial transport terms and 
by the nonlinear reaction-rate terms in the law of mass action) in terms of mean 
field quantities. It is uncertain that universally applicable closures can be 
formulated; but i t  is certain that current empirical guidance for formulating 
even tentative closures is so lacking that such an approach is currently very 
speculative. 

One apparent alternative is to try to extract helpful insight from equations 
that one is certain do apply to turbulent reacting flow, namely, the time- 
dependent conservation laws. The following discussion represents an effort in 
this direction for unpremixed burning in the near-equilibrium limit. 

Consider mixing in a two-dimensional free shear layer downstream of a splitter 
plate separating initially unmixed reactants. I f  the fluid were to have zero 
coefficient of diffusion for mass, then an interface, commencing at the splitter 
plate and extending downstream, could be defined which separates the reactants. 
For turbulent flow, this interface might become more and more highly convoluted, 
and even multiply connected, but it would remain intact indefinitely far down- 
stream. The velocity vector should be locally and transiently parallel to the 
interface, because there is no flow across the interface. If the coefficient of 
diffusion were now taken to be small but finite, there would be slight inter- 
penetration of the two species in the vicinity of the interface. Furthermore, if 
the two species were highly reactive, then the thin flame would have to lie in 
the region where the reactants coexist, i.e. in the limited region of interdiffusion 
in the vicinity of the interface. The flow in the region of interdiffusion would have 
large tangential shear stresses. 

The reason why, for a given distance downstream from the end of a splitter 

t The authors wish to  acknowledge discussions on this subject with Prof. Frank E. 
Marble of the California Institute of Technology. 
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plate, a turbulent flow consumes more reactant than a laminar flow is that the 
highly convoluted turbulent flame is so much longer per unit streamwise dis- 
tance. There is also the possibility that the spatially and temporally changing 
velocity along the flame may alter the rate of reactant consumption a t  the flame, 
i.e. not only is the flame in the turbulent case longer than in the laminar case, 
but also the pronounced rate of strain along the flame may affect the burning rate 
per unit flame length. While strain along the flame would result in net stretching, 
indefinite lengthening cannot occur because inevitably a narrow protuberance 
of one reactant into the bulk of the other must result, and such extrusions would 
be burned off to leave an effectively shortened flame. If the rates of consumption 
of the reactants over a region of turbulent shear flow with unpremixed burning 
appear quasi-steady, then such counteracting effects are in approximate balance. 

There are, of course, aspects of the speculations of the last two paragraphs that 
require further discussion. For example, the thickness of the region of inter- 
diffusion, in which molecular diffusion instantaneously acts, is proposed to be 
appreciably smaller than the mean thickness of the mixing layer itself. It is 
a matter of conjecture as to just how thin this laminar interdiffusion region is 
relative to the mean thickness of the layer, and, quantitatively, the resolution 
of this point awaits additional experimental measurements. Furthermore, the 
interdiffusion region may well be a distinguishable zone of the mean mixing-layer 
thickness in transitional flow (where laminar instability and vortex pairing are 
fist observed), and probably in non-equilibrium turbulent flow in a free mixing 
layer as well. At present, whether or not the interface becomes so convoluted 
downstream that the structure discussed here becomes eventually indiscernible 
does not seem to be fully resolved. Wherever the concept of a discernible inter- 
diffusion region within the significantly thicker mean mixing layer is valid, the 
mean and instantaneous profiles for the mass fractions and enthalpy may differ 
appreciably. Under such circumstances the probability distribution functions 
for the fluctuating components of these dependent variables are highly non- 
Gaussian (Bush & Fendell 19733). 

Experimental evidence in the literature pertinent to the structure of the mixing 
layer just discussed is now briefly reviewed. 

Brown & Roshko (1971) have made density traverses, and taken shadow- 
graphs, of the fully developed, two-dimensional, chemically inert, turbulent, 
subsonic mixing layer downstream of a plate separating streams of appreciably 
different molecular weight. These workers discovered a large-scale structure on 
the shadowgraphs, of the thickness of the shear layer itself. Furthermore, the 
instantaneous density traverses revealed rather rapid transitions from the 
lighter density to the heavier density, but limited evidence of intermediate 
density; the time-averaged traverses revealed the conventional equilibrium 
turbulent shear-layer profile for the mean density. These results seem to suggest 
the existence of a narrow interface between the species withlittleinterpenetration, 
the large-scale structure permitting gas from one side of the layer to be con- 
vected to the other side. The existence of such a large-scale structure is clearly 
lost in the time averaging. The large-scale structure may be identified with the 
interface discussed above. Grant, Jones & Rosenfeld (1973) have since reported 
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shadowgraphs of turbulent diffusion flames involving axisymmetric jets of 
propane issuing into a stagnant atmosphere. These shadowgraphs confirm the 
existence of a large-scale orderly structure, and the persistence of discrete 
regions of fuel and oxident well into the burning region. 

Gibson & Libby (1972) noticed the possible existence of narrow sharply defined 
reaction zones in their probings of an unpremixed acid-base reaction in a 
turbulent flow. The existence of such thin reaction zones contradicts the concept 
of instantaneously spatially diffuse burning in a turbulent diffusion flame, 
although a diffuse flame results on time averaging (Hawthorne, Weddel & 
Hottel 1949). Gibson & Libby note the importance of finite s h i n  along the 
flame, but furnish no study of a flame with a parallel impressed strain rate for 
the transient case pertinent to gases. Such a solution is given in appendix B. 

Otsuka & Niioka (1973) note that, experimentally, for the two-dimensional 
diffusion flame with n longitudinal strain such that the flame is stretched, there 
is, in general, a deviation between the flame location and the stagnation plane 
of the flow. Results in appendix B confirm this observation. These authors aIso 
note a departure from the thin-flame results when the rate of strain becomes too 
large. It has already been noted that increasing the strain rate, while holding all 
other parameters fixed, eventually will result in departure from the interfacial 
combustion where the reactants meet in stoichiometric proportions. 

Thus, experimental and theoretical work on unpremixed combustion in free 
turbulent shear layers suggests that the burning occurs instantaneously along 
highly convoluted thin interfaces, continually stretched and lengthened by 
a longitudinal strain. Only upon time averaging would the rapidly translating, 
relatively thin combustion interfaces yield spatially distributed combustion 
zones. Furthermore, this work suggests that a close-up view of processes occurring 
in the immediate vicinity of the thin flame is furnished by the transient counter- 
flow case with a finite time-dependent longitudinal strain rate. 

4.3. Interpretation of the solution 

The solution to the transient counterflow problem, in which there is a t'ime- 
invariant reservoir of species A and A ,  as y +-m, and of species B and B, 
as y++m, these species chemically react'ing according to (2.1), is given in 
appendix B. Here some physically noteworthy aspects of the solution are 
discussed. 

A solution exists to the conservation equations (2.2)-(2.10) in which the 
normal velocity v, temperature T and concentrations yi are functions of ( y , t )  
only, while the tangential velocity u = x/(t+t,), where t, is a reference time. 
Thus, the solution does indeed describe a case in which there is a spatially 
constant, though temporally varying, strain rate tangential to any flames that 
arise. The thin flames that do arise in the (self-similar) equilibrium irreversible 
case are two spatially separated flames entirely consistent with figure 1. Because 
of the insight gained from § 3, little further discussion of this case is required. 
It is noted, however, that the flames spatially approach one another when the 
ambient concentrations of both of the monatomic species A and B tend t o  zero. 
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Further, the rates of consumption increase as the square root of the strain rate, 
when all other parameters are held fixed; the tangential straining induces an 
influx of fresh reactants to the burning interfaces to augment the rate of product 
creation. 

Too large straining, however, can cause departures from chemical equilibrium, 
and thus possible reduction in consumption rates. For small departures from 
chemical equilibrium, for the second-order reactions given in (2. I ) ,  the non- 
self-similar corrections to the equilibrium irreversible solutions are exponentially 
small in magnitude, except in regions O( Qk-*) in thickness about the thin-flame 
positions, where QL is the appropriate characterization of the first Damkohler 
number for the parameter expansion analysis (see next paragraph). This state- 
ment implies that, for example, only an exponentially small amount of species 
A passes through the upper flame (see figure 1)  unreacted to the predominantly 
B, side of the burning zone. The two flames possess small though finite structure, 
and in general do not interact. Thus, for example, in the upper burning region, 
in which O(0L-a) amounts of A and B, coexist, and in which the maximum 
enthalpy is decreased by an amount of O(S2L-a) from its thin-flame value, 
diffusion and chemical reaction are the dominant physical processes; con- 
vection enters first in the next higher order of approximation for the burning 
zone. 

Departures from equilibrium irreversible conditions decrease when the strain 
rate becomes small relative to the reaction rate. Since the tangential strain rate 
is inversely proportional to time t ,  under the boundary-initial conditions con- 
sidered here, the thin-flame solution is approached sooner for larger reaction 
rates (parameter expansion analysis), but is eventually approached for long 
times by all finite reaction rates (co-ordinate expansion analysis). Interestingly, 
the spatial extent of the region in which there is an algebraically large departure 
from thin-flame conditions increases as t*, but the magnitudes of the departures 
from the thin-flame values decrease as t-4. 
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Appendix A. The one-dimensional transient mixing flow case 
Consider the specific example where the initial conditions for the variables 

H’(<, 0) = H’O(<) and J;(<, 0) = J;O(<) (compatible with the boundary conditions 
for these variables H’( + 00, T) = 8 ( ~ )  = constant, Ji( + 00, T) = &T) = constant, 
H’( -CO,T)  = ~ ( T )  = constant, J;(-co,T) = J(T) = constant) are given by (cf. 
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H‘O = I? = constant for 5 > O,  H’O = 12 = constant for < < 0; (A 1) 

J&, = Jc,,, = 0 for 5 > 0, Jsc1) = &,,, = o for 6 < 0, (A za) 

J&) = icIz, = 0 for 5 > 0, (A Zb)  

Ja“, = jAz = 0 for 6 > 0, J2z = jAz = constant for 6 < 0;  (A 3 b )  

A 

J$(*, = jclzl = 0 for 5 < 0; 
J ’ O  A - - J ^A - - 0 for 5 > 0, J: = JA = o for 5 < 0, (A 3a) 

A 
J ’ O  - J - ] (A4a)  

} (A4b) 

- - constant for a < 5, J;3” = J &  = 0 for 0 < 5 <  a, 

J;ZO = JB = o for < <  0, 
A 

JZZ = JB, = 0 for a < <, J2 ,  = J& = constant for 0 < 6 < a, 

JSz = jBz = 0 for 5 < 0. 

Physically, the above initial conditions model the situation where there is an 
impermeable non-conducting diaphragm located a t  5 = 0 (to be burst a t  time 
T = 0), which initially separates the fuel (species A and A,) in the lower half- 
plane 6 < 0 from the oxidant (species B and BJ in the upper half-plane 5 > 0. 
The (product-free) fuel is maintained at a constant temperature HIo = H, while 
the (product-free) oxidant is maintained a t  a constant temperature HIo = 8. It 
is assumed, since this is the physically interesting case, that the initial fuel 
temperature H is less than that required for the dissociation of the fuel from its 
diatomic form to its monatomic form, hence JZ = 0 and jj0? = constant for 
6 < 0. On the other hand, it is assumed that the initial oxidant temperature 8 
is sufficiently higher than that required for the dissociation of the oxidant 
from its diatomic form to its monatomic form. Further, it  is assumed that the 
diaphragm is very catalytic to the recombination of the oxidant from its mon- 
atomic to its diatomic form. These competing effects, thermal dissociation and 
catalytic recombination, in the upper half-plane are modelled by t@ initial 
conditions J;3“ = 0 and Jg2 = J& = constant for 0 < 5 < a, and J Z  = JB = con- 
stant and JZz = 0 for a < [, with a the effective thickness of the recombination 
zone. The situation considered does, in fact, simulate actual circumstances in 
some existing hydrogen-fluorine diffusion-type chemical lasers, when the fuel 
is identified as hydrogen and the oxidant is identified as fluorine. 

The initial conditions for the Shvab-Zeldovich functions Fi(5, 0) = Fio(c), 
derived from (A 1)-(A 4), are given by 

0 (a  < C ) ,  
(A 5a)  F’O A - - J’O A+Ja”,-Jsz = - J &  (0 < < < a ) ,  

’A2 (<<  O); 1 
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(A 5 4  

(A 5 e )  

Substitution of the initial values FLo(<), for the example under consideration, 
into the integral representations for the solutions (3 .9 )  

yields 

F& = +[fi{1 + erf q5} + k{1 - erf $1 + Q; Jgz{erf $ - erf (q5 - E ) >  + Qh .fA2{1 - erf $}I, 
(A 7 a )  
(A 7 b )  

(A 7 c )  

(A 7 4  

.FL = $[-J+ Bz{ er +-erf + &,{l -erf $}I, 
F& = +[jB(l + erf (4 - E ) }  + J&,{erf$ - erf ($ - E ) }  - JA,{1 - erf #}I, 

G,,, = $[J&,{erf$ - erf($ - €)}I, 
"b,%, = $['A2{' - #}I, (A 7 4  

where q5 = 51273 and e = a/2r3. The solutions to the basic boundary-value problem 
in the equilibrium limit (Qzl = 0), for the initial conditions (A 1)-(A 4), are given 
implicitly by (A 7 ) ,  subject the flame-sheet boundary conditions (3 .7 ) .  These 
positions are determined implicitly from the relations 

FL = J> + J>, - J;, 
--f - (jAz + J&) erf q51 + JB+, erf (q51 - e ) ]  

-+ o as $+ q51 = 5J273, (A 8a)i 
FI, = J&+ J&,- JL ,  

--f $[(&-142)+ (JB,+&,)erf9,- (Gz-jB)erf($2-41 

--f o as $ - + q 5 ,  = 52;2/2r3. (A 8 b )  
From a careful examination of (A 8a,  b ) ,  it is determined that q51 > $2 andlor 
Cl 2 5,. It is noted that determination of cl(r) and <,(r) from (A 8a, b )  for specific 
values of the parameters YA2, jB  and J&, is perhaps most readily carried out by 
integration of 

(A 8 c )  
a<l ap i  lar 

with cl, c2 --f 0 as r --f 0. Next, i t  is determined that 

F ;+$jB(~+erf ($ , -~)}  = J &  as 

(A 10a) 

x (1 +erf($,-e)} = T;* as q5 + &. (A l o b )  
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Oxidant Fuel Enthalpy 

Case 2 

FIGURE 2. Initial profiles for the dependent variables. The evolution in time for case 1, 
developed in (A 1)-(A 12), is depicted in figures 3 and 4. The evolution in time for case 2, 
introduced in (A 13),  is depicted in figures 5 and 6. For both case 1 and also case 2, there 
is no product gas taken to be initially present, i.e., 5& = J&?) = 0 for all 5 a t  7 = 0. 

Here, the facts that J;3, = 0 for 5 < Cl and that J>, = 0 for 5 2 Q have been 
employed. 

The solutions to  the boundary-value problem can now be given explicitly in 
terms of the Shvab-Zeldovich functions presented in (A 7). These solutions are 

Jb,,, = Fb,,, +Fa,  Jb,,, = Ph,,,, H' = F h + Q ; F i  in Cl < t l <  GO; 

J>,,J;3, = 0, J> = F>, J& = Fh, (A l l a )  

Jh,,, = K&) Jb,,, = "d,,,) H' = F ;  in c 2  < c < c1; (A l i b )  

Jb,,, = F;7,,,) 

JL,J>, = 0, J;3 = Fk+F>) J;, = -F' A )  

YB, J k g  = 0, J> = F>+ F;3, Jla, = - F' BY 

Jb,,, = Fb,,,+P&, H' = Fh+ QLFL in -GO < 5 < C2. 
(A l l c )  

For aid in the presentation of the temperature and species concentration 
profiles for this two-flame mechanism in unpremixed burning, an illustrative 
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FIGURE 3. The evolution in time T for the initial profiles given as case 1 in figure 2. For 
small times, two spatially separated flames develop, but by time T = 1.0 the initial finite 
quantity of Jb ,  has been so depleted that little additional J&, is beingproduced. (a) T = 0.1. 
(0) T = 0.2. (C) 7 = 1.0. 

0 ~z 1 2 3 i 2  

7 

FIGURE 4. Further results depicting the evolution in time T for case 1 of figure 2. Whereas 
the flame front c2 (at which J;, and 5; pass to J&,) translates but little in time, the flame 
front Q (at which .JL and pass to J;,,,) translates appreciably. Initially the temperature 
TI* a t  cl is the maximum because that reaction is more exothermic, but soon so little 
unburned J i s  remains that the temperature Ti* a t  Q is maximum. 

computation has been performed. In  this computation, the parameters have the 
following values (pertinent to the burning of hydrogen and fluorine highly 
diluted in nitrogen) : 

I?,H = 1, jA , , jB ,2Jga  = 0.1, Q; = 27.7, QB = 9.1, a = 1. (A 12) 

Results of the computation are given in figures 2-4. 
A slightly modified case is obtained by reducing the temperature H'O = & 

of the fuel so that partial dissociation occurs throughout the upper half-plane 
(the diaphragm is now taken to be non-catalytic). In  all other respects, the 
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7"; 
Ti* 

1 -  5 1  - - Yz 

-3L-3c - A  - A  
' 0  0-02 0.04 0.06 0.08 0.10 ' 0  0.02 044 0.06 0.08 0.10 ' 0  0.02 0.04 0.06 0.08 0.10 

FIGURE 5. The evolution in time 7 for the initial profiles given as case 2 in figure 2. Here, 
two spatially distinct flames develop and continue to burn vigorously. (a) 7 = 0.1. 
( b )  7 = 0.2. (c) 7 = 1.0. 

problem remains unchanged. The initial conditions expressed in (A i)-(A 3) still 
hold, but in place of (A a), 

J z  = I B =  constant for < >  0, J s =  jB= 0 for < <  0, (A13a) 

JZ2 = jB2 = constant for (A 13b) 

Further details of the solution may be found in Bush & Fendell ( 1 9 7 3 4 .  Results 
of a numerical computation carried out with the parameter values given in (A 12) 
are presented in figures 2, 5 and 6; of course, the parameter a does not enter the 
self-similar solution to the modified case. 

5 > 0, JSz  = JB2 = 0 for 5 < 0. 

Appendix B. The transient counterflow case 
Formulation 

The second flow case to be considered is the transient counterflow case, for which 
the flow quantities are taken to  be 
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For this case, then, the governing equations are 

au 
(B2c)  

Associated with (B 2) are the boundary conditions (P( t )  = F( + co, t) and 
P(t)  = F (  - 00, t ) )  

1 a 0  0, = specified functions of t, with j j - & + U  ( 
- - -'+'I (B 3a) 

A h  h A A  A 

JB, JB, = specified function oft, JA, Ja,, J ,  J,,,, = 0, 
1 (- ab + ") = -P+,\ (B 3b) 

H" at 
0, H = specified functions oft, with 

JA, 4, = specified functions oft, &, JB, & J&,, = 0. I 
Here, as in § 3, it is assumed that only species B and/or B, exist as y + + 00, while 
only species A and/or A ,  exist as y + - 00. 

Consider now the particular case where 

U(y, t )  = O(t) = b(t) = l/(to + t ) ,  with to = reference constant. (B 4) 

For this case, from (B 3), it  is seen that P+(t) = 0, and thus (B 2b)  becomes an 
identity. 

Application of a modified Howarth-Dorodnitsyn transformation (different 
from the one employed in 9 3) ( y ,  t )  -+ (t, q), with 

to  (B 2a) yields 

with ?"(& 7) = {$(to - t)}s V ( y ,  t)  and H'(& 7) = H ( y ,  t). Under this transforma- 
tion, then, it is seen from (B 2 4  that the functions F b ( 6 , ~ )  = F,(y, t) satisfy, in 
the domain ( > 0, -co < 7 < +a, 

Note that, with the introduction of the operator L', defined by 



718 

the equations for the Shvab-Zeldovich functions may be expressed as 

W .  B. Bush and F.  E.  Fendell 

L‘{Fi} = 0. (B 6 b )  

Further, to the order of approximation considered, the components of the func- 
tions F;([, r ) ,  namely, H’([, 7) = H ( y ,  t )  and J; ([ ,  7)  = .I&, t ) ,  satisfy 

L’{H’} = - (Q; Q; G; + Qh Qg Gh), (B 8a)  

(B 8 c )  

(B 8 4  

(B 9a) 

(B 9b) 

L’{J>} = Q;G;- Qh Gi, L’{JLE} = QLGL, (B 8b) 

L’{Jk] = Q;l GL - Q; G;, L‘{Jkz} = 0; G;, 

L’{JhIl1} = - Q; G;, L’{Jdla,} = - Qh Gh, 
where the quantities GL(C,7) are given by 

G; = $to exp { - 0;(T;* - H’)/H’} J L  J;, exp {$C}, 
G; = $to exp { - 0g(T;* - H’)/H’} J k  JLZ exp {$[}. 

H ‘ - + I Z ,  ~ k - + j ~ ,  ~ k ~ - f j g , ,  J > , J > , , J ~ ~ ~ , , J ; ~ ~ ,  -+o as y-++co, 

From (B 3), it  is seen that the system of equations (B 6) and/or (B 8) must satisfy 

(B 10a) 

For what follows, it is assumed that B, jB, iBz, k, jA and jA, are specified con- 
stants. 

Near-equilibrium flame structure : parameter expansion analysis 

Attention is directed now to the determination of the solutions for the flow 
quantities F’(& 7) ( = IT([, r ) ,  J l ([ ,  7) and/or Pi([, 7)) in the near-equilibrium 
limit, defined by 

0; = 2; exp - 0 3  = v;C Q = {$to}-l vk Q -+ 00, (B l l a )  
for the case where 

0; = akO = O(1). (B l l b )  

Specifically, it is assumed that Q -+ 00 and 0 = O( l), with vk (and v;) and 9, = O( 1). 
First, solutions for the variables F([, q) ,  in the near-equilibrium limit Q -+ 00 

with 0 = O(l ) ,  are sought in terms of outer asymptotic expansions of the form 

F’(C,v) z C A(s)(Q)B“s)([,7) = F(0)([,r)+A(1)(Q)F(1)([,7)+ ... . (B 12) 

Here, it is assumed that A(o)(Q) = 1 and A(s+l)(Q)/A(s)(Q) -+ 0 as Q + 00, while 
P([, 7) = O( 1) for [, 7 = O( 1). Solutions based on these expansions should be 
valid except, possibly, near vk([), the locations of the reaction fronts, Application 
of this expansion scheme to the Shvab-Zeldovich functions Fi([ ,q)  yields, to 
leading order of approximation, 

s=o 
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Then, the solutions of the above boundary-value problems are given by 

(B 13b)  J 
F P ) ( ~ )  = &[i",{l+ erfy) + Pq{l - erfyj-1 

= aio) erf 7 + bho), 
h I  

with 

From the definitions of the Shvab-Zeldovich functions [cf. (2.6)], it  follows that, 
for example, 

a p  = & ( F a ; ) ,  P bh O )  - - 1 2 (  P*+Jfq). 

a~)=&((~+&;jB,)-( t i+C2;. jaz)>,  b$'= P((ii+&;jB,)+(li+Q;.4,)), (B 14a) 

a$) = -_I Z(&+fA,+LfB,)j b$) $(JA+JAz-JB,), 
Y Y A  

A h  * A  } (B 146) 
ag) = Q ( J ~ +  J,,+J~,), b p  = ~ ( J ~ + J , , - J , ~ ) .  

Here, it is assumed that QL = O(1). 
To the order of approximation considered, from the Burke-Schumann thin- 

flame model (cf. § 3), at the equilibrium flame fronts, 7 + rll([) z yio) = constant 
and 7 + y z ( [ )  r 7i0) = constant, respectively, and JZ),  J::, J g ) ,  J$i -+ 0. Further 
from the very nature of the two-step chain reaction itself, it is necessary that 
J24; -+ 0 as 7 + yio) and that J$i --f 0 as 7 + ?Lo). Thus, the positions of the two 
(thin) flames are determined as follows: 

F$)(7io)) = 0 so that erf 7io) = - b(O)/a$) A = (& + 4, - j,,)/(& + 4, + i,,); 
(B 15a)  

A A  

FB (0) (a2 (0) ) - - 0 , so that erf 7io) = -@)/a(# = - (Jn + J,, - jAz)/(iB + iB, + jA2). 

(B 15b) 
From these equations it follows that ?lo) -rho) 2 0, since 

erfTi0) - erfyio) = bg)/ag)- bs) /as)  = J'"'(jB + 2In2) +i,(SA + 2iA,) 2 0. 

(B 16) 
It is noted that 7i0) - yi0) + 0 if both JA and + 0. The reference flame tempera- 
tures TL*, introduced in (B 9), are now (conveniently) identified to be the values 
attained by H(O) at r#), i.e., 

Fg)(yp)) = H(O)(yjO') 

Fg)(yp) = H(O)(7(,0)) 

= a$?)erf(y:O))+b$) = (a$)bg)-b(O) (0) (0) - T 
A .,)/.A - ;*, (B 17a) 

= a$) erf(yi0)) + b$) = ( ~ , g ) b $ )  - b(0) B ~ T ) / u B  (0) (0) - - T ;*. (B 17b) 

The magnitudes of the finite reactant mass fractions at  the respective flames are 



F(# -+ [2n--ta$) exp { - (7(2°))2)] (7 --?jio)) + . . . 
=/3B,2(7-r(2°))f..** 

For examination of the behaviour of the flow quantities near the flame fronts 
in greater detail, the following ('stretched ') spatial co-ordinates are introduced: 

Q = (7 --@))/d,(Q), with 8, + 0 as i2 + co. (B 21a) 

Solutions for the variables F'([,  v), in the limit 52 -+ co with 8 = O( I), are now 
sought in terms of inner expansions of the form 

B K  7) E c r im HPE-, ck) = rma) ~ Y L  a + r~ tw  mvg7 c,) + . .., 
. r=O 

(B 21 b )  

with Pg+')(Q)/Fg)(s2)  -+ 0 as i2 + 00, and Ht) (E ,  <,) = O(1) for [, Q = O(1). For 
the sake of brevity, only the analysis for k = 1 is presented here; the parallel 
analysis for k = 2 follows directly. 
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Application of the present expansion scheme to the Shvab-Zeldovich func- 
tions ah(& q), P&(& q) and Fa(<, q) yields [cf. (B 2Oa)], to the leading orders of 
approximation, 

The solutions of (B 22) suggest that the inner expansions for the components of 
the Shvab-Zeldovich functions should reduce to the following forms : 

(B 23a) 

where it is assumed that uA2, Q) --f 0 as Q + m. Substitution of these expansions 
into the equations describing the Shvab-Zeldovich functions gives 

Equation (B 24a) furnishes three equations for the four unknowns h , , ,  jB , l ,  
jB2, and j ,  1; a fourth equation is derivable from the second equation of (B 8 c). 
Application of the inner expansion scheme to this equation yields 

a?Bz, = j A ,  l j B z ,  1 exp {%>. 
Here, the following identification has been made: 

(B 24b) 

6,(Q) = (vlQ)-) + o as SZ -+ 00. (B 25) 

From (B 24), the following equation forjBz,l(t, el) is derived: 

(B 26a) 

withPA,, < 0 [cf. (B 14b) and (B 20a)l. Alternatively, by the change of variables 

1lac; = (PA, 1 el + j B z ,  l ) j B z ,  1 exp {$t}, 

x = - -PA,  1)’ exp {$6} el, = ( - PA,  l)-’ exp {%};>jB,, 1 (B 27) 

(B 26) is brought into the ‘universal form’ 

a2Yplap = (Y - x )  xr. (B 26b) 

The boundary conditions associated with (B 26) are 

j B z , l + ( - / ? A , l ) c l +  +CO as c l - + + ~  and/or Y + x +  +CO as X + + C O ;  

(B 28a) 

j B z , l  --f as c1-+-m and/or Y+O as X + - C O .  (B28b)  

Further, it should be noted that, for x --f - 03 with Y + 9 -+ 0, (B 26 b) yields 

a2q/ax2+ - x q ,  so that ’#! N exp { - $( - x)”; (B 29a) 
46 F L M  64 
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while for x -+ + 00 with Y + x + 9 -+ x, ( B  26 b)  yields 
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a2!?/ax2 --f x!?, so that !? - exp { - 3x41. ( B  29b) 

From the above, it is seen that only an exponentially small amount of reactant 
penetrates the near-equilibrium flame for the second-order reaction under study. 

Thus, the flame structure (or leading-order inner expansion) solutions for 
reaction 1 are summarized, in terms of the variables of ( B  27), by 

It is noted that the thickness of the flame zone is 0(0‘-%), and the magnitude 
of the deviation of the temperature in this flame zone from Ti* is also O( 0’-*), 
where it is taken that + 00. With respect to this scaling for the thickness and 
temperature deviation, it is seen, from a basic low-speed deflagration formula- 
tion (cf. footnote on p. 701), that, in order for the inner expansions to be self- 
consistent, i t  is required that II’Q’4 -+ 0. 

Near-equilibrium flame structure : co-ordinate expansion analysis 

Consider the flow problem formulated in terms of the independent variables r 
and 7, rather than 6 and 7, with r and 7 given by [cf. ( B  5) and ( B  1 l)] 

Solutions are sought in the spatial domain -00 < 7 < +co in the limit 7 --f co 
(cf., for example, Krishnamurthy & Williams 1971; Bush & Fendell 1973a), 
where 7 -+ 00 is identified as a singular near-equilibrium limit. 

Two properties of the solution seem noteworthy. First, one may write, for the 
co-ordinate expansion analysis, the inner variables Ck as 

while, within the flame zones, the deviations of the temperatures (say) from their 
thin-flame (or equilibrium) values are given by 

While the departure of the temperature from the adiabatic flame temperature 
goes to zero as t-4 (for t + 00) within the flame zones (to the leading order of 
approximation), the spatial thickness of the domain of the inner expansion 
increases as t*, all parameters being held constant. 

Second, the magnitude of the fuel consumption per unit time (the so-called 
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‘ apparent flame strength’) is conveniently characterized by, for the flame near 
Yt = y:, 

( B  33a)  

where quantities with a dagger superscript are dimensional, while those with 
subscript r are representative values. For the co-ordinate expansion analysis, 
by (B 31) ,  

while, for the parameter expansion analysis by (B 5a),  

( B  33 b )  

( B  33c) 

For chemical equilibrium the expressions on the right-hand side of (B 33b)  and 
(B 33c)  are independent of k:, so ?i?+ - (k:)*, all other parameters being held 
constant. Statements entirely analogous to (B 33b)  and ( B  33c)  hold for the 
reactant consumption rate at the other flame a t  7 = qz, except that the gradient 
factor involves JL, rather than J;,. 
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